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Abstract

Understanding the soft error vulnerability of supercomputer ap-
plications is critical as these systems are using ever larger num-
bers of devices that have decreasing feature sizes and, thus, in-
creasing frequency of soft errors. As many large scale parallel
scientific applications use BLAS and LAPACK linear algebra rou-
tines, the soft error vulnerability of these methods constitutes a
large fraction of the applications’ overall vulnerability. This pa-
per analyzes the vulnerability of these routines to soft errors by
characterizing how their outputs are affected by injected errors
and by evaluating several techniques for predicting how errors
propagate from the input to the output of each routine. The
resulting error profiles can be used used to understand the fault
vulnerability of full applications that use these routines.

1 Introduction
In recent years, supercomputing systems have grown dramati-
cally. Systems like BlueGene/L and RoadRunner feature more
than 100,000 processors and tens of TBs of RAM and future
designs promise to exceed these limits by large margins. Large
supercomputers are made from high-quality components, but in-
creasing component counts make them vulnerable to faults, in-
cluding hardware breakdowns [14] and soft errors [10].

Modern electronics are increasingly susceptible to soft er-
rors [1], with SRAM soft error rates (SERs) growing exponen-
tially as larger and larger memory chips come into use. Cur-
rent systems typically experience 1,000-10,000 failures per billion
hours of operation (FIT) per Mb of memory [3]. A cluster with
1000 processors, each supporting a 10Mb cache with 1600 FIT
averages 10 errors per month [3]. Further, soft errors in micro-
processor logic are expected to rise in importance [11] in part
because the design of flip-flops and latches is similar to that of
SRAM cells. Major systems already suffer from the results of soft
errors, with ASCI Q experiencing 26.1 CPU failures per week [10]
while an L1 cache soft error occurs about once every four hours
on the 104K node BlueGene/L system at Lawrence Livermore
National Laboratory.

The soft error problem makes it difficult to trust the results
of applications that run on large systems. To overcome this dif-
ficulty, we must understand how such those errors affect applica-
tion output, particularly if the errors are not easily detected or
corrected. Existing work evaluates application vulnerability by
injecting errors and examining their effect on application output.
While these techniques can be effective, they can also be very
expensive, requiring hundreds or thousands of application runs
to achieve a representative sample size.

We explore an alternative to full application fault injection
based on the fault vulnerability of the application’s individual
routines. Specifically, we examine how errors affect the output of
individual routines how errors propagate through the routines.
This approach supports analysis of the fault vulnerability of ap-
plications that use these routines without the cost of a full fault
injection experiment. This paper represents an early step in this
“modular” error vulnerability analysis by evaluating the fault

0This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. (UCRL-ABS-XXXXXX).

vulnerability of the major routines from the BLAS [7] and LA-
PACK [2] linear algebra libraries. We evaluate the errors patterns
that result from injecting errors both the original and fault toler-
ant versions of these routines. We also explore predictions of the
error propagation properties of each routine based on machine
learning techniques. Our results identify algorithms and training
methods that result in accurate predictions for those routines.

2 State of the Art

”Fault injection” is the most common technique to investigate
the effect of soft errors: random faults are injected into applica-
tion state at random points during its execution. These injec-
tions can be performed at multiple levels of abstraction, ranging
from memory bit-flips [6] to architectural-level simulation [12] to
physical experiments [9].

Many researchers have applied fault injection to a few repre-
sentative systems and applications in order to examine their fault
vulnerability and provide a basic understanding of the soft error
problem. However, developers need to understand the fault vul-
nerability of their specific application and it is difficult to extend
fault injection results to other applications. Furthermore, fault
injection techniques are still very expensive: a single fault injec-
tion campaign requires thousands of injections for each variant of
the application and input set and a full software-level fault injec-
tion study may take tens to hundreds of thousands of CPU hours
(Lu and Reed [6] used ∼138,000 CPU-hours to study three paral-
lel applications with reduced input sets), with lower-level studies
either much more expensive or much more limited in their scope.

Currently application developers have few options for evaluat-
ing the fault properties of their applications. Existing techniques
limit them to a few small examples or to extrapolations from full
studies of (hopefully) representative applications. However, the
increasing impact of soft errors in high performance computing
makes a full and detailed understanding of application fault vul-
nerability increasingly critical. Without this understanding, ap-
plication users may rely on corrupted application results or waste
significant compute cycles due to overly conservative fault toler-
ance solutions. Thus, we must develop new, efficient techniques
to characterize the fault vulnerability of specific applications.

3 Experimental Details

BLAS and LAPACK are popular libraries that contain many
commonly used linear algebra operations. In addition to being
used directly by many scientific application developers, these li-
braries are common building blocks of larger libraries such as
ScaLAPACK [4] and BLACS [8]. This makes them excellent
representatives for the types of libraries used in scientific com-
puting. Although BLAS and LAPACK consist of many routines,
we focused on several high-level routines that are likely to be
used directly by application developers and contain a non-trivial
amount of computational work 1. In this study we focused on
the versions that operate on generic real matrixes of double pre-
cision floating point numbers. The names of these routines start
with “DGE” to signify this configuration (D for double and GE for
general matrix), followed by the name of the routine.

1We purposely avoided simple routines such as matrix copy or multipli-
cation by a scalar.



In addition to evaluating the basic operations, we also evalu-
ated fault tolerant versions of these operations that use operation
semantics to validate the output of the operation and repeat the
operation if an error is detected. With each operation we first
run the real operation then run some tester code that validates
its correct output. For example, SVD factorization is verified by
multiplying the factored matrixes together and comparing the re-
sult to the original matrix. If there is a discrepancy, the operation
is executed again and if the identical discrepancy appears again
we assume that the detection was a false positive due to roundoff
error. If the discrepancy is different, we run the operation yet
again and return the majority result.

The routines examined in this study are: DGEMV, DGEMM, DGER,
DGESV, DGELS, DGESVD, DGGSVD, DGESDD, DGEEV, DGEGEV, DGEES,
DGGES, which includes matrix-matrix and matrix-vector multi-
plication, rank-1 update, linear least squares, SVD factorization
and eigenvector routines.

This study was performed on two different platform using
the BLAS and LAPACK implementation available inside Intel’s
Math Kernel Library (MKL). The first platform, referred to in
the following as Itanium2/MKL8, consists of 4-way single-core
1.4Ghz Itanium2 nodes with 8GB RAM running MKL version
8. The second platform, referred to as Opteron/MKL10, consists
of 4-way dual-core 2.4Ghz Opteron nodes with 16GB RAM run-
ning MKL version 10. Both platforms run Chaos Linux, a high-
performance Linux variant based on RedHat Enterprise Linux.

We injected all faults using the Sting fault injector based on
the Dyninst dynamic instrumentation library [5]. It stops the
application at a random points and then flips a single bit in the
application’s heap, globals, stack or in a register. In this study
we focused on heap injection as the error model since all BLAS
and LAPACK data is stored on the heap and RAM corresponds
to the physically largest soft error target on modern systems.

4 Fault Injection into Library Routines

4.1 Representation of Corruptions
Error patterns in matrixes and vectors are represented as follows.
For each entry xout in the error-free output matrix or vector, and
entry x′out of the corrupted output matrix or vector, we compute
the corruption c as c = x′out/xout. We represent value corruptions
as multiplicative factors because they closely correspond to the
notion of error magnitude that is most relevant to linear algebra
calculations. Other metrics such as the number of flipped bits
would not be nearly as relevant.

To simplify our analysis we represent matrix/vector corrup-
tion patterns as histograms, where the x-axis corresponds to the
multiplicative error factors c and the y-axis corresponds to the
number of times the given factor occurs in a given corrupted
matrix/vector. To bound the number corruption factors used in
the analysis, we group similar factors and maintain counts for
each group. Figure 1 illustrates this by showing the output error
histogram for the DGEMM operation with the corresponding multi-
plicative factors groups below. 0, 1, -1, ∞ and −∞ are assigned
their own groups. Factors around 1 and -1 are are assigned to
the smaller groups, with [1− 2−50, 1) and (1, 1 + 2−50] being the
smallest. Groups double in size as they move away from 1 and -1
until they reach 2, 0 and/or -2. Groups outside [-2, 2] are much
larger, increasing at a double exponential rate as they move fur-
ther from 0. The top number line shows how these groups given
equal space and the bottom shows how these groups would map
to the real number line.

This grouping scheme directly correlates to bit flips in num-
bers stored in IEEE floating point number notation. Bucket ∈
[0, 2] corresponds to flips in the mantissa and buckets ∈ [2, 10308]
correspond to 0→ 1 bit flips in the exponent. 1→ 0 bit flips in
the exponent fall into buckets ∈ [0, 1] and flips in the sign bit falls
into the -1 bucket. Other negative buckets correspond to a sign
bit flip followed by a flips in other bits. Another property of this
representation is that it provides the finest granularity of repre-
sentation around 1, the multiplicative factor that corresponds to

no error. Most application developers have a target error toler-
ance that naturally occurs due to round-off error, meaning that
errors within this tolerance are irrelevant to their results. Thus,
fine granularity around 1 gives developers a clear way to identify
the probability and distribution of important errors.

4.2 Results of Injection

For our BLAS and LAPACK fault injection experiments we ran
each routine 2000 times on a combination of random input ma-
trixes and vectors. We then compared the outputs of each rou-
tine to the corresponding error-free outputs and computed the
resulting corruption pattern. As our input set we generated 100
random square non-symmetric matrixes using the DLATMR LA-
PACK routine, with the individual numbers sampled from the
uniform distribution (Uni) in the range [-1, 1]. We used matrixes
sizes of 62x62, 125x125, 250x250 and 500x500 and vectors of cor-
responding sizes ranging from 62x1 to 500x1. Figure 2 shows
sample output corruption patterns from three routines from Ita-
nium2/MKL8 (similar results on Opteron/MKL10), from runs
on 62x62 inputs on operations DGGES, DGEMM and DGESV.

The four error patterns visible in this figure are representative
of the patterns seen in other routines. The output beta of DGGES
only shows positive errors, with a distribution focused around 1
and falling off for very small and large error factors. The spike
at 1 is a common feature of the output error histograms and
corresponds to a multiplicative error c that corresponds to no
error. In MM’s output C we observe a related pattern with negative
multiplicative errors showing either high exponents or only a sign
bit flip (c = −1). DGGES’s output vsr shows a pattern that has
the full spectrum of errors, with spikes at 1 and -1 and some
concentrations towards the extremely small and extremely large
multiplicative errors. Negative errors are almost two orders of
magnitude less common than positive errors. DGESV, on the other
hand, shows a significantly different pattern: all the errors are
positive and occur not as a raised plateau but in a flat line,
with different multiplicative factors being equally likely. DGESV’s
output L shows yet another pattern, where only a few specific
error factors are represented.

The major feature of all these graphs is that individual bit-
flip errors tend to diffuse themselves into many entries in each
routine’s outputs. These errors may stay exclusively positive or
may take up both signs. Small errors are typically more common
than large errors.

Figure 3 shows changes in the output error histograms of
DGESVD (SVD factorization) outputs beta and V as the input
sizes grow from 62x62 to 500x500. These outputs, which are
representative of the outputs of other operations, show how little
error patterns vary across input sizes. beta shows practically no
change, while V’s pattern evolves very gradually, reaching steady
state by 250x250. This data highlights that there exists a weak
dependence between the input size and the output error pattern
that drops off for larger matrixes. This indicates that although
input size matters, studying the error behavior of BLAS and LA-
PACK routines at small inputs will result in small error. Based
on this observation, this study focuses on 62x62 inputs, since
they are computationally more tractable.

From the perspective of the application developer the most
important thing about an operation’s output error pattern is not
its exact shape but rather the probability of the output having
an error that is large enough to compromise the integrity of the
application’s results. Because different applications have differ-
ent levels of “acceptable” error due to natural round-off errors
and errors in the input, different applications have different tol-
erances for error due to random faults. Figure 4(a) shows the
probability for each operation that a fault injection will result
in an error that is larger than a given tolerance, for tolerances
ranging from multiplicative errors of 2e− 14 to .75. The output
error rates vary dramatically between operations, with the eigen-
vector operations having > 60% chance of outputting an error at
tolerance 4e−13, while DGEMM, DGER and DGELS have only a 2.5%,
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Figure 1: Multiplicative factor groups
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Figure 2: Sample error histograms

.5% and .012% chance of outputting an error at the same tol-
erance. As the application’s tolerance for errors rises, the error
rates drop steadily. However, while most operations drop to be-
low 10% error at the very loose tolerance of .75, the eigenvector
operations only reach 32% chance of error for DGEES and DGEEV
and 14% chance for DGGEV and DGGES. For most tolerances the
error rates of most operations are > 10%.

Figure 4(b) shows the error rates of the fault tolerant variants
of each operation as a fraction of the error rate of the original
operation for the same range of tolerances. The fault tolerant op-
erations reduce the error rates dramatically by a factor of two for
small tolerances and more than ten for large tolerances. However,
they do not erase errors completely because the testers signal an
error only if they detect a discrepancy of at least 1e− 7 between
two values that should be equal. The detection bound was set to
this value because it is the tightest bound where the false positive
rate (probability of ordinary round-off resulting in a failed test)
rose above 5%.
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Figure 4: Error rates of regular and fault tolerant operations for
different tolerances

These results show that a single injected fault can have a
dramatic effect on the output of BLAS and LAPACK operations,
with a single 1-bit flip resulting in the output being corrupted
in many places, the corruptions ranging widely in magnitude.
This means that soft errors are a significant problem for numeric
routines and can affect the integrity of application results.

Note that the output error patterns were identical on our
two platforms: IA64/MKL8 and Opteron/MKL10. This sug-
gests that the error vulnerability of MKL BLAS and LAPACK
has little dependence on the underlying architecture. Since the
algorithms used by the two versions of MLK are the same, it
means that algorithmic details have the largest influence on er-
ror propagation while low-level details such as exact choice and
order of instructions is much less important.

5 Fault Propagation

5.1 Training Propagation Predictors
The results discussed above help us understand the effect of soft
errors on individual routines. The next step is use this infor-
mation to understand how these errors are propagated through
the application. The full effect of this propagation completely de-
pends on how the affected state is used by the application. Thus,
a given error may have no effect because it affects state that will
never be read again or it may have a dramatic effect if it is am-
plified by routines that use it in their input. Since it is very diffi-
cult to analytically determine the error propagation properties of
complex routines, the only practical alternative is to empirically
compute how each routine’s propagates error training a predic-
tor function from sample input and output error patterns. Such
predictors can then be used to analyze the error vulnerability
properties of full applications. Producing accurate predictions of
operation output error histograms in a wide variety of applica-
tions requires the right choice predictor algorithm and the right
choice of sample input error patterns on which to train it. In
this study we evaluated three different predictor algorithms on
five different training set classes.

The predictor algorithms employed were:
• LinSq: linear least squares,

• SVM: support vector machines, using the linear, 2nd de-
gree polynomial, sigmoid and rbf kernel functions (for rbf,
gamma = 0.1, 1.0 and 10.0), and

• ANN: artificial neural nets, using the linear, gaussian, gaus-
sian symmetric and sigmoid transfer function with either 3,
10 or 100 hidden layers.

We trained each algorithm on a list of input/output error his-
tograms, where the input error histograms were drawn from one
of five distributions. In each run we corrupted a single entry of
every operation input from the given distribution. The distribu-
tions were:
• DataInj: Multiplicative error that corresponds to a flip in

a single bit of an IEEE double floating point number.

• DataInj-R: Recursive version of DataInj where we sample
from the distribution of output errors that result from using
DataInj to corrupt the input.
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• DataUni: Multiplicative error chosen uniformly at random
from the range [-100, 100].

• DataUni-R: Recursive version of DataUni.

• Inj-R: Recursive version of error injection where we sample
from output error histograms that result from fault injec-
tion; when drawing errors from this distribution we first
randomly pick an operation and then sample from it output
error histogram.

Each routine was run on ∼2000 random input corruptions.

5.2 Predictor Accuracy
Figure 5 provides a higher-level picture of the accuracy of the
different predictor options and training sets. Figure 5 shows the
accuracy of different predictors, which is measured as the ratio
of the Earth Mover Distance [13] (EMD) between predicted and
real output error patterns and the EMD of the real error and
the error pattern of a single 1-bit error (the trivial error hypoth-
esis); lower is better. Figure 5(a) shows the predictor accuracy
relative to their respective training sets and averaging over all
the operations. It becomes clear that neural nets perform consis-
tently poorly regardless of the training set. LinSq performs best
when trained on the DataInj distribution while SVM is best when
trained on the DataInj and DataInj-R distributions, which be-
have similarly. SVM with the linear and polynomial kernels reach
the best fits, although the LinSq predictor performs more consis-
tently. Figure 5(b) shows the same data but plots the predictors
against the operations, averaging over the training sets. Again
ANN shows consistently poor performance. LinSq, SVM-linear and
SVM-polynomial show similar performance, with little consistency
across different operations. SVM-rbf shows intermediate perfor-
mance between the two groups.
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Figure 5: Accuracy of all configurations, relative to error of DataInj
distribution

6 Summary

This paper has presented an experimental evaluation of error vul-
nerability of common scientific computing libraries, BLAS and

LAPACK. By looking at application error vulnerability in a mod-
ular fashion this work supports future efforts to analyze the error
vulnerability of full applications by aggregating these per-routine
profiles into full application profiles. We evaluated the fault vul-
nerability of both the regular as well as fault tolerant versions of
12 major BLAS/LAPACK routines, showing that checking rou-
tine output significantly improves their reliability and that the
error patterns of various routines change little with larger input
sizes. Further, we evaluated the possibility of predicting the fault
propagation properties of scientific library routines by looking at
three different machine learning algorithms that were trained on
five different input error patterns. In the process we showed that
the best accuracy was exhibited by linear least squares and sup-
port vector machines with two kernels and that the choice of
input error patterns used to train the predictor was important.
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